Y=-16x^2+80+5

Simple and best practice solution for Y=-16x^2+80+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16x^2+80+5 equation:



=-16Y^2+80+5
We move all terms to the left:
-(-16Y^2+80+5)=0
We get rid of parentheses
16Y^2-80-5=0
We add all the numbers together, and all the variables
16Y^2-85=0
a = 16; b = 0; c = -85;
Δ = b2-4ac
Δ = 02-4·16·(-85)
Δ = 5440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5440}=\sqrt{64*85}=\sqrt{64}*\sqrt{85}=8\sqrt{85}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{85}}{2*16}=\frac{0-8\sqrt{85}}{32} =-\frac{8\sqrt{85}}{32} =-\frac{\sqrt{85}}{4} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{85}}{2*16}=\frac{0+8\sqrt{85}}{32} =\frac{8\sqrt{85}}{32} =\frac{\sqrt{85}}{4} $

See similar equations:

| 7x-1=2x+6-2 | | 590/a+76=-42 | | 4,000,000=4x+10 | | 3y-9=y+7 | | 7x-4+9x-44=180 | | 6x+14=5+6x | | (x+40)+(x+40)+x+x=440 | | y=-3(8)-5 | | 14x-35=7 | | 35=22x–12x+5 | | x=2(5)-2 | | 2x^2+15x-1100=0 | | 3(2y-2)+4y=44 | | 5x-2=20x3-23x2-29x+14 | | 5=11-x | | 0.3p=3.6 | | 2(x+2.20)=23.20 | | 4x-2(-3x-5)=90 | | 1.25x+0.74=x | | 1.25x+0.74=20 | | 1.25x+0.74=20x | | -8x-7x+3=0 | | x+5/8=3/8 | | 3x-2(-x+4)=x+(-32) | | -40-4n=6(n+6) | | (6x+28)+(5x+26)=180 | | 11+(6-x)÷2=26 | | 5(x-5)+1=7x-32 | | 4x-13=2x-7 | | 4x2-5x-11=0 | | -11x=18+12x | | 6(-1+3x)=6(x+5) |

Equations solver categories